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Abstract

The propagation of thermoelastic waves along circumferential direction in homogeneous, transversely
isotropic, cylindrical curved plates has been investigated in the context of theories of thermoelasticity. This
type of study is important for ultrasonic non-destructive inspection of large-diameter pipes, which helps in
the health monitoring of ailing infrastructure. Longitudinal stress-corrosion cracks are usually temperature
dependent and can be detected more efficiently by inducing circumferential waves; hence the study of
generalized thermoelastic wave propagation in the circumferential direction in a pipe wall is essential.
Mathematical modeling of the problem of obtaining dispersion curves for curved transversely isotropic
thermally conducting elastic plates leads to coupled differential equations. The model has been simplified
by using the Helmholtz decomposition technique and the resulting equations have been solved by using
separation of variable method to obtain the secular equations in isolated mathematical conditions for the
plates with stress-free or rigidly fixed, thermally insulated and isothermal boundary surfaces. The closed
form solutions are also obtained under different situations and conditions. The longitudinal shear motion
and axially symmetric shear vibration modes get decoupled from the rest of the motion and are not affected
by thermal variations, whereas for the non-axially symmetric case of plane strain vibrations, these modes
remain coupled and are affected by temperature changes. Moreover, these vibration modes are found to be
dispersive and dissipative in character. In order to illustrate theoretical development, numerical solutions
are obtained and presented graphically for a zinc plate. The obtained results are also compared with those
available in the literature in case of waves in cylindrical shell/circular annulus in the absence of
thermomechanical coupling and thermal relaxation times.
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see front matter r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Victorov [1] established the fundamental mathematical modeling of the problem for isotropic
material properties. He introduced the concept of angular wave number and derived, decomposed
and solved the governing differential equations. He found the solutions for convex and concave
cylindrical surfaces by considering only one curved surface. Qu et al. [2] obtained the results for
guided waves in isotropic curved plates by adding the boundary conditions for the second surface.
Many investigators [3–8] have solved elastic wave propagation problems in homogeneous
anisotropic and multilayered solids in the longitudinal direction along one or multiple curved
surfaces to analyze the different aspects. Nayfeh [9] limited his analysis to the flat plate case and
Armenakas and Reitz [10] have studied waves propagating in the axial direction of the cylinder.
Recently, Towfighi et al. [11] studied the elastic wave propagation in circumferential direction in
anisotropic cylindrical curved plates with the help of the Fourier series technique. They obtained
and presented dispersion curves for anisotropic curved plates of different curvature.
Mathematical modeling of wave propagation in the axial direction of a cylinder has been studied
extensively. However, for wave propagation in the circumferential direction, which is essential for
nondestructive testing (NDT) of large-diameter pipes, only fewer investigations exist in the
literature [11]. The theory of elastic wave propagation in anisotropic solids is well known [12,13].
In case of suddenly applied thermal loading, thermal deformation and the role of inertia become
greater. Since thermal stresses change very rapidly, the static analysis cannot capture its behavior.
This dynamic thermoelastic stress response is significant and leads to the propagation of elastic
stress waves in solids. The theory of thermoelasticity is well established [14]. The governing field
equations in classical dynamic coupled thermoelasticity (CT) are wave-type (hyperbolic)
equations of motion and a diffusion-type (parabolic) equation of heat conduction. Therefore, it
is seen that part of the solution of the energy equation extends to infinity, implying that if a
homogeneous isotropic elastic medium is subjected to thermal or mechanical disturbances, the
effect of temperature and displacement fields is felt at an infinite distance from the source of
disturbance. This shows that part of the disturbance has an infinite velocity of propagation, which
is physically impossible. With this drawback in mind, some researchers, such as Lord and
Shulman [15] and Green and Lindsay [16], modified Fourier law of heat conduction and
constitutive relations so as to get a hyperbolic equation for heat conduction. These works include
the time needed for the acceleration of heat flow and take into account the coupling between
temperature and strain fields for isotropic materials. Banerjee and Pao [17] investigated the
propagation of plane harmonic waves in infinitely extended anisotropic solids, taking into account
the thermal relaxation time. Dhaliwal and Sherief [18] extended the generalized thermoelasticity
[15] to anisotropic elastic bodies. Chandrasekharaiah [19] referred to a wave-like thermal
disturbance as ‘second sound’. These theories are also supported by experiments [20–22]
exhibiting the actual occurrence of second sound at low temperatures and small intervals of time.
The investigators [23–28] studied the propagation of plane harmonic waves in homogeneous
anisotropic heat-conducting elastic materials. Recently, Sharma [29] presented an exact analysis
of the free vibrations of a simply supported, homogeneous, transversely isotropic cylindrical panel
based on the three-dimensional coupled thermoelasticity.
The problem of generalized thermoelastic wave propagation in the circumferential direction of

homogeneous, transversely isotropic, curved plates has not been analyzed earlier and is
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considered for the first time in this paper. The mathematical model has been simplified by using
the Helmholtz decomposition technique and the secular equations for different mechanical
situations and thermal conditions have been obtained and discussed. The results obtained have
also been compared and reduced to those available in the literature at appropriate stages of this
work. The theoretical developments have been verified numerically and illustrated graphically for
a zinc crystal plate.
2. Formulation of the problem

We consider a homogeneous, transversely isotropic, thermally conducting elastic cylindrical
plate having inner and outer radii ‘a’ and ‘b’ respectively. The plate is assumed initially at uniform
temperature T0 in the undisturbed state. The geometry of the problem is shown in Fig. 1 and we
consider the problem of wave propagation in the direction of the curvature. We will
interchangeably call the wave carrier a curved plate, cylinder, pipe segment or simply pipe, all
meaning the same thing. But we are interested in analyzing the dispersive waves in the curved
plate for waves propagating from section S1 to S2 (see Fig. 1). Wave speed is proportional to
radius of curvature.
This analysis does not include the reflected guided waves from the plate boundary. The

considered geometry of the problem can be a segment of a cylinder or a complete cylinder. In
cylindrical coordinates, the governing field equations of motion and heat conduction in the
absence of body forces and heat sources are

srr;r þ
1

r
sry;y þ srz;z þ

srr � syy
r

¼ r €ur;

sry;r þ
1

r
syy;y þ syz;z þ

2sry

r
¼ r €uy;

srz;r þ
1

r
syz;y þ szz;z þ

srz

r
¼ r €uz; ð1Þ

K1 T ;rr þ
1

r
T ;r þ

1

r2
T ;yy

� �
þ K3T ;zz � rCeð _T þ t0 €TÞ

¼ T0
@

@t
þ d1kt0

@2

@t2

� �
½b1ðerr þ eyyÞ þ b3ezz�;
S1 S2

a

b

Fig. 1. Geometry of the problem.
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where

srr ¼ c11err þ c12eyy þ c13ezz � b1ðT þ t1d2k
_TÞ; sry ¼ c66ery;

syy ¼ c12err þ c11eyy þ c13ezz � b1ðT þ t1d2k
_TÞ; syz ¼ c44eyz;

szz ¼ c13err þ c13eyy þ c33ezz � b3ðT þ t1d2k
_TÞ; srz ¼ c44erz; ð2Þ

err ¼ ur;r; eyy ¼
uy;y

r
þ

ur

r
; ezz ¼ uz;z; ery ¼

ur;y
r

þ uy;r �
uy

r
; erz ¼ ur;z þ uz;r;

eyz ¼ uy;z þ
1

r
uz;y; c66 ¼

c11 � c12

2
; ð3Þ

b1 ¼ ðc11 þ c12Þa1 þ c13a3; b3 ¼ 2c13a1 þ c33a3: ð4Þ

Here u ¼ ður; uy; uzÞ is the displacement vector; Tðr; y; z; tÞ is the temperature change;
c11; c12; c13; c33 and c44 are five independent isothermal elastic parameters; a3; a1 and
K3;K1 are, respectively, the coefficients of linear thermal expansion and thermal conductivities
along and perpendicular to the axis of symmetry; r and Ce are, respectively, the density
and specific heat at constant strain and t0 and t1 are thermal relaxation times. The
comma notation is used for spatial derivatives and the superposed dot represents
time differentiation. d1k is Kronecker’s delta in which k ¼ 1 for Lord–Shulman (LS)
theory and k ¼ 2 for Green–Lindsay (GL) theory of thermoelasticity. It can be proved
thermodynamically [23] that K140;K340 and of course r40;T040:We assume in addition that
Ce40 and that the parameters of isothermal linear elasticity are components of a positive definite
fourth-order tensor. The necessary and sufficient conditions for the satisfaction of latter
requirements are

c1140; c114c12; c2114c212; c4440; c33ðc11 þ c12Þ4c213: ð5Þ

3. Boundary conditions

Let us consider following types of boundary conditions. The lower and upper surfaces r ¼ a

and r ¼ b of the plate are assumed to be
(i)
 stress free, which leads to

srr ¼ 0; srz ¼ 0; sry ¼ 0; ð6aÞ
(ii)
 rigidly fixed, which implies that

ur ¼ 0; uz ¼ 0; uy ¼ 0; ð6bÞ
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(iii)
 thermal conditions

T ;r þ hT ¼ 0; ð6cÞ
where h is Biot’s heat transfer coefficient. Here h ! 0 refers to thermally insulated boundaries and
h ! 1 corresponds to isothermal surfaces.
4. Solution of the problem

In order to solve Eq. (1), we assume [29]

ur ¼
1

r
c;y � f;r; uy ¼ �

1

r
f;y � c;r; uz ¼ w: ð7Þ

Upon using Eq. (7) in Eq. (1) and keeping in view that the various physical quantities are
independent of axial coordinate (z), we find that the functions f;T ;c and w satisfy the non-
dimensional equations

r21 �
@2

@t2

� �
f ¼ �ðT þ t1d2k

_TÞ; ð8aÞ

r21T � ð _T þ t0 €TÞ ¼ ��
@

@t
þ t0d1k

@2

@t2

� �
r21f; ð8bÞ

r21 �
1

c4

@2

@t2

� �
c ¼ 0; ð9Þ

r21 �
1

c2

@2

@t2

� �
w ¼ 0; ð10Þ

where

u0
i ¼

ro�v1

b1T0
ui; r0 ¼

o�

v1
r; s0ij ¼

sij

b1T0
; o� ¼

Cec11

K1
; 2¼

b21T0

rCec11
; a0 ¼

o�

v1
a;

c1 ¼
c33

c11
; c2 ¼

c44

c11
; c3 ¼

c14 þ c13

c11
; c4 ¼

c11 � c12

2c11
; �b ¼

b3
b1

; �K ¼
K3

K1
; b0 ¼

o�

v1
b;

t0 ¼ o�t; t00 ¼ o�t0; t01 ¼ o�t1; T 0 ¼
T

T0
; v21 ¼

c11

r
; c0 ¼

c

v1
; o0 ¼

o
o�

; ð11Þ

r21 ¼
@2

@r2
þ
1

r

@

@r
þ
1

r2
@2

@y2
:

Here dashes are ignored for convenience, o� is the characteristic frequency of the plate, v1 is the
longitudinal wave velocity in the medium and � is the thermoelastic coupling constant. Eqs. (9)
and (10) in c and w give purely transverse waves, which are not affected by temperature changes.
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These waves are polarized in planes along and perpendicular to the z-axis and may be referred to
as the shear horizontal (SH) and shear vertical (SV) waves, respectively.
We assume a solution of the form [17,23–29]

fðr; y; tÞ ¼ �fðrÞeiðpy�otÞ;

Tðr; y; tÞ ¼ �TðrÞeiðpy�otÞ;

cðr; y; tÞ ¼ �cðrÞeiðpy�otÞ;

wðr; y; tÞ ¼ �wðrÞeiðpy�otÞ; ð12Þ

where o is the angular frequency and p is the angular wave-number. Towfighi et al. [11] pointed
out that in cylindrical geometry, the generation of surface waves in the circumferential direction
with a plane wave front requires the circumferential wave speed to be a function of the radial
distance. We also adopt the same formulation here and hence assume that the phase velocity is not
constant but changes with radius. The phase velocity at a point having radius r is given by

vphðrÞ ¼ cbr=b; ð13aÞ

where cb is the phase velocity at the outer surface having a radius b: In the case of flat plate, the
wave number x is defined as o=vph; because curvature does not change, although for a curved
plate the same definition would be r dependent. Therefore, the angular wavenumber p; which is
independent of r; is defined as [11]

p ¼ o=ðvphðrÞ=rÞ ¼ ob=cb: ð13bÞ

Substitution of Eqs. (12) into Eqs. (8)–(10) gives us

ðr22 þ o2Þ �f ¼ iot1 �T ; ð14Þ

ðr22 þ o2t0Þ �T ¼ �o2t00r
2
2
�f; ð15Þ

r22 þ
o2

c4

� �
�c ¼ 0; ð16Þ

r22 þ
o2

c2

� �
�w ¼ 0; ð17Þ

where

r22 ¼
@2

@r2
þ
1

r

@

@r
�

p2

r2
;

t1 ¼ t1d2k þ io�1; t00 ¼ t0d1k þ io�1; t0 ¼ t0 þ io�1: ð18Þ



ARTICLE IN PRESS

J.N. Sharma, V. Pathania / Journal of Sound and Vibration 281 (2005) 1117–1131 1123
The solution of Eqs. (14)–(17) is written as

�f ¼
X2
k¼1

½AkJpðoakrÞ þ BkY pðoakrÞ�;

�T ¼ iot�11
X2
k¼1

ða2k � 1Þ½AkJpðoakrÞ þ BkY pðoakrÞ�;

�w ¼ A3Jp

offiffiffiffi
c2

p r

� �
þ B3Y p

offiffiffiffi
c2

p r

� �
;

�c ¼ A4Jp

offiffiffiffi
c4

p r

� �
þ B4Y p

offiffiffiffi
c4

p r

� �
; ð19Þ

where Ak;Bk; k ¼ 1; 2; A3;B3;A4 and B4 are arbitrary constants and

a2k ¼ 1
2
½ð1þ t0 � io�t00t1Þ � fð1� t0 � io�t00t1Þ

2
� 4io�t0t1t00g

1=2�; k ¼ 1; 2:

Here Jp and Y p are, respectively, the Bessel functions of first and second kind and of order p:
5. Secular equation

The displacements, temperature and stresses are obtained as

ur ¼ � �f0
þ
ip �c

r

 !
eiðpy�otÞ; ð20Þ

uy ¼ � �c0
�
ip �f

r

 !
eiðpy�otÞ; ð21Þ

uz ¼ �weiðpy�otÞ; ð22Þ

T ¼ �Teiðpy�otÞ; ð23Þ

srr ¼ 2c4
�f0

r
þ

o2

2c4
�

p2

r2

� �
fþ

ip

r
�c0
�
1

r
�c

� �" #
eiðpy�otÞ; ð24Þ

srz ¼ c2 �w
0eiðpy�otÞ; ð25Þ

sry ¼ 2c4
�c0

r
þ

o2

2c4
�

p2

r2

� �
�c�

ip

r
�f0
�

�f
r

 !" #
eiðpy�otÞ; ð26Þ

where prime denotes differentiation with respect to radial coordinate r.
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5.1. Stress-free plate

Invoking the stress-free and thermal boundary conditions (6a) and (6c) at the lower and upper
surfaces r ¼ a; b of the plate and using Eqs. (23)–(26), we obtain the following secular equations:

J 0
p

oZ1ffiffiffiffi
c2

p

� �
Y 0

p

oZ2ffiffiffiffi
c2

p

� �
� J 0

p

oZ2ffiffiffiffi
c2

p

� �
Y 0

p

oZ1ffiffiffiffi
c2

p

� �
¼ 0; ð27Þ

Elj

		 		 ¼ 0; l; j ¼ 1; 2; 3; 4; 5; 6; ð28Þ

where

E11 ¼ a1J
0
pðoa1Z1Þ þ oZ1

1

2c4
�

p2

o2Z21

� �
Jpðoa1Z1Þ;

E13 ¼ a2J
0
pðoa2Z1Þ þ oZ1

1

2c4
�

p2

o2Z21

� �
Jpðoa2Z1Þ;

E15 ¼ ip
1ffiffiffiffi
c4

p J 0
p

oZ1ffiffiffiffi
c4

p

� �
�

1

oZ1
Jp

oZ1ffiffiffiffi
c4

p

� �
 �
;

E21 ¼ �ia1p J 0
pðoa1Z1Þ �

1

oa1Z1
Jpðoa1Z1Þ


 �
;

E23 ¼ �ia2p J 0
pðoa2Z1Þ �

1

oa2Z1
Jpðoa2Z1Þ


 �
;

E25 ¼
1ffiffiffiffi
c4

p J 0
p

oZ1ffiffiffiffi
c4

p

� �
þ oZ1

1

2c4
�

p2

o2Z21

� �
Jp

oZ1ffiffiffiffi
c4

p

� �
;

E31 ¼
io
t1

ða21 � 1Þ½oa1J
0
pðoa1Z1Þ þ hJpðoa1Z1Þ�;

E33 ¼
io
t1

ða22 � 1Þ½oa2J
0
pðoa2Z1Þ þ hJpðoa2Z1Þ�;

E35 ¼ 0: ð29Þ

Here h ! 0 corresponds to thermally insulated boundaries and h ! 1 refers to that of the
isothermal one. The elements Elj ðj ¼ 2; 4; 6Þ of the determinantal equation (28) can be obtained
by just replacing the Bessel functions of the first kind in Elj ðj ¼ 1; 3; 5Þ with those of the second
kind, while Elj’s ðl ¼ 4; 5; 6Þ are obtained by replacing Z1 in Elj ðl ¼ 1; 2; 3Þ with Z2; where Z1 ¼
a=R ¼ 1� Z�=2; Z2 ¼ b=R ¼ 1þ Z�=2; Z� ¼ ðb � aÞ=R is the thickness-to-mean radius ratio of the
plate. Eq. (27) governs the motion corresponding to the case of longitudinal shear where only the
uz displacement occurs and is given by Eq. (25). These modes of vibrations are not affected by
temperature change. Eq. (27) agrees with Graff [30] (cf. Eq. 8.26.2) for the case of waves in
cylindrical shell in elastokinetics. For p ¼ 0; i.e. for the motion independent of y; Eq. (27) becomes

J1
oZ1ffiffiffiffi

c2
p

� �
Y 1

oZ2ffiffiffiffi
c2

p

� �
� J1

oZ2ffiffiffiffi
c2

p

� �
Y 1

oZ1ffiffiffiffi
c2

p

� �
¼ 0: ð30Þ
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The amplitude ratio in this case is given by

A3

B3
¼ �Y 1

oZ1ffiffiffiffi
c2

p

� ��
J1

oZ1ffiffiffiffi
c2

p

� �
: ð31Þ

Eq. (30) corresponds to axially symmetric shear modes and as in the case of solid rod the lowest
torsional mode is non-dispersive. These modes are not affected by thermal variations. Eq. (28)
corresponds to the case of plane-strain motion. For p ¼ 0; i.e. for the motion independent of y; it
is found that under these conditions of axially symmetric vibrations the extensional and shear
modes get decoupled from each other. The secular equation (28) for p ¼ 0 provides us

E0
25E

0
56 � E0

55E
0
26 ¼ 0; ð32Þ

E0
lj

		 		 ¼ 0; l ¼ 1; 3; 4; 6; j ¼ 1; 2; 3; 4; ð33Þ

where E0
lj can be written from Elj ; l; j ¼ 1; . . . ; 6 by setting p ¼ 0:

5.2. Rigidly fixed plate

Invoking the rigidly fixed and thermal boundary conditions (6b) and (6c) at the lower and
upper surfaces r ¼ a; b of the plate and using Eqs. (20)–(23), we obtain the secular equations as

Jp
oZ1ffiffiffiffi

c2
p

� �
Y p

oZ2ffiffiffiffi
c2

p

� �
� Jp

oZ2ffiffiffiffi
c2

p

� �
Y p

oZ1ffiffiffiffi
c2

p

� �
¼ 0; ð34Þ

Flj

		 		 ¼ 0; l; j ¼ 1; 2; 3; 4; 5; 6; ð35Þ

where

F11 ¼ oa1Z1J
0
pðoa1Z1Þ;

F13 ¼ oa2Z1J
0
pðoa2Z1Þ;

F15 ¼ �ipJpðoZ1=
ffiffiffiffi
c4

p
Þ;

F21 ¼ ipJpðoa1Z1Þ;

F23 ¼ ipJpðoa2Z1Þ;

F25 ¼ oZ1J
0
pðoZ1=

ffiffiffiffi
c4

p
Þ=

ffiffiffiffi
c4

p
;

F31 ¼
io
t1

ða21 � 1Þ½oa1J
0
pðoa1Z1Þ þ hJpðoa1Z1Þ�;

F33 ¼
io
t1

ða22 � 1Þ½oa2J
0
pðoa2Z1Þ þ hJpðoa2Z1Þ�;

F35 ¼ 0: ð36Þ

Here h ! 0 corresponds to thermally insulated boundaries of the plate and h ! 1 to that of the
isothermal one. The elements Flj ðj ¼ 2; 4; 6Þ and Flj ðl ¼ 4; 5; 6Þ can be rewritten by following the
same analogy as applied to Elj : Eq. (34) again governs the motion corresponding to the case
of longitudinal shear in the rigidly fixed plate where only uz displacement occurs and is given by
Eq. (22). Also, Eq. (34) is the equivalent form of Eq. (27) in this case for the waves propagating in
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a cylindrical shell in elastokinetics. These modes of vibrations are not affected by thermal
variations. For p ¼ 0; Eq. (34) becomes

J0
oZ1ffiffiffiffi

c2
p

� �
Y 0

oZ2ffiffiffiffi
c2

p

� �
� J0

oZ2ffiffiffiffi
c2

p

� �
Y 0

oZ1ffiffiffiffi
c2

p

� �
¼ 0: ð37Þ

The amplitude ratio in this case is given by

A3

B3
¼ �Y 0

oZ1ffiffiffiffi
c2

p

� ��
J0

oZ1ffiffiffiffi
c2

p

� �
: ð38Þ

Eq. (35) corresponds to the case of plane-strain motion. For p ¼ 0; i.e. for the motion independent
of y; it is found that under these conditions of axially symmetric vibrations, the extensional and
shear modes uncouple from each other. The secular equation for axially symmetric shear modes
(p ¼ 0) is given by

F 0
25F

0
56 � F 0

55F
0
26 ¼ 0:

This implies that

J1
oZ1ffiffiffiffi

c4
p

� �
Y 1

oZ2ffiffiffiffi
c4

p

� �
� J1

oZ2ffiffiffiffi
c4

p

� �
Y 1

oZ1ffiffiffiffi
c4

p

� �
¼ 0: ð39Þ

The secular equation for extensional modes becomes

F 0
lj

			 			 ¼ 0; l ¼ 1; 3; 4; 6; j ¼ 1; 2; 3; 4; ð40Þ

where F 0
lj can be obtained from Flj by setting p ¼ 0: The decoupled shear modes do not depend on

thermal variations and are not affected due to change in temperature. For the non-axially
symmetric ðpa0Þ case of plane-strain vibrations, these modes remain coupled and are affected by
thermal variations. The vibrational modes are dispersive and dissipative in character. The above
analysis reduces to homogeneous isotropic, cylindrical curved thermoelastic plate if we set

c11 ¼ c33 ¼ lþ 2m; c12 ¼ c13 ¼ l; c44 ¼ m ¼ c66; b1 ¼ b ¼ b3; K1 ¼ K ¼ K3: ð41Þ

The analysis in case of coupled thermoelasticity (CT) can be obtained by setting t0 ¼ 0 ¼ t1 and
for uncoupled thermoelasticity (UCT) by taking � ¼ 0; t0 ¼ 0 ¼ t1 in the present study. The
secular equations and all other relevant results in case of LS and GL theories of dynamic
generalized thermoelasticity can be obtained from the above analysis by taking k ¼ 1 and k ¼ 2;
respectively, in expressions (18) for t0; t1 and t00 and then using the resulting values of these
parameters in different relations at various stages. Upon using parameters defined in Eq. (41) in
the above analysis, the secular Eq. (28) in the absence of temperature effect viz. uncoupled
thermoelasticity � ¼ 0ð Þ reduces to the corresponding equation obtained by Liu and Qu [6] in case
of guided circumferential waves in a circular annulus (cf. Eq. (17)) in dimensionless form here.
6. Numerical results and discussion

In order to illustrate theoretical results obtained in the preceding sections, we now present some
numerical results. The material chosen for this purpose is single crystal of zinc, the physical data
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for which is given below [26]:

r ¼ 7:14� 103 Kgm�3; c11 ¼ 1:628� 1011 Nm�2; c12 ¼ 0:362� 1011 Nm�2;

c13 ¼ 0:508� 1011 Nm�2; c33 ¼ 0:627� 1011 Nm�2; c44 ¼ 0:385� 1011 Nm�2;

b1 ¼ 5:75� 106 Nm�2 deg�1; b3 ¼ 5:07� 106 Nm�2 deg�1; Ce ¼ 3:9� 102 JKgm�1 deg;

o� ¼ 5:01� 1011 s�1; T0 ¼ 296K; � ¼ 0:0221:

The phase velocity of various modes of wave propagation has been computed from secular Eqs.
(28) and (35) for various values of wavenumber and for different boundary conditions. The
numerical computations have been performed by taking a ¼ 0:1 and b ¼ 1:0: The dispersion
curves corresponding to secular equations (28) and (35) for different modes are presented in Figs.
2a, 2b, 3a and 3b in the context of various theories of thermoelasticity viz. CT, LS and GL. Fig. 4
containing the dispersion curves in the absence of temperature field viz. in case of UCT is also
added for comparison purpose here. From Figs. 2 and 3, it is observed that the phase velocities of
different modes of wave propagation start from large values at vanishing wave number and then
exhibit strong dispersion until the velocity flattens out to the value of the thermoelastic Rayleigh
wave velocity of the material at higher wave numbers. The reason for this asymptotic approach is
that for short wavelengths (or high frequencies) the material plate behaves increasingly like a thick
slab and hence the coupling between upper and lower boundary surfaces is reduced and as a result
the properties of symmetric and skew symmetric waves become more and more similar. In the
limit for an infinitely thick slab, the motion at the upper surface is not confined to the lower
surface, and the displacements become localized near the free boundaries, thus the Lamb wave
dispersion curves asymptotically approach those of Rayleigh waves. Another investigation of the
figures shows that the curves approach the Bleustein–Gulyaev (B–G) wave velocity or the shear
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Fig. 2. (a) Phase velocity profile of wave modes in a stress-free, isothermal plate with circumferential wavenumber. (b)

Phase velocity profile of wave modes in a stress-free, thermally insulated plate with circumferential wavenumber.
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thermoelasticity.
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horizontal (SH) wave velocity at higher wave number. The velocity of the first mode tends
towards the B–G wave velocity, whereas the velocities of other modes tend towards the SH wave
velocity. This is due to the fact that for the first mode the surface wave for the plate will become
dominant when the wavelength is small as compared to the thickness of the plate. However, the
B–G wave velocity and the SH wave velocity are almost the same in the current study. It also
shows that the higher modes can only exist beyond certain values of the wavenumber, for
example, the second mode begins around p ¼ 1:0 in Fig. 2 for a plate with stress-free boundaries
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and in case of plate having rigidly fixed boundaries, the second mode appears around p ¼ 0:7; as
can be seen from Fig. 3. The dispersion curves for the first six modes in case of UCT have also
been obtained and plotted in Fig. 4 for single crystal of zinc. The dispersion curves in Fig. 4 look
similar to those of Qu et al. [6] for Z ¼ 0:1; except the modification due to anisotropic effects. It is
once again seen that at higher wavenumbers the first mode is almost non-dispersive for the
considered thickness of the plate and asymptotically approaches the Rayleigh wave velocity.
Except the first three modes, all higher modes have phase velocity greater than the shear wave
speed in the considered wavenumber range. Because the phase velocity cb is greater than the shear
wave speed for very thick plate, it is seen that the phase velocity of second mode here is also
greater than the Rayleigh wave velocity and approaches the Rayleigh wave velocity as p ! 1:
This agrees with the corresponding fact noted by the earlier authors [1,6] in case of isotropic
materials. The trends of variations of various dispersion curves are noted to be similar to those
obtained by Towfighi et al. [11], except the modifications due to thermomechanical coupling and
thermal relaxation times in addition to the application of the exact analytical technique. It is also
observed that in the context of various theories of thermoelasticity (CT, LS and GL), the phase
velocity in CT theory has higher value than in other theories. The value of phase velocity in LS
and GL theories follows the one in CT theory of thermoelasticity.
7. Conclusions

In this paper, the Bessel functions with complex arguments have been directly used to study
thermoelastic wave propagation problems in anisotropic cylindrical plates along the circumfer-
ential direction. Three displacement potential functions are introduced in order to simplify the
equations of motion and heat conduction equation. It is noticed that the longitudinal shear
motion and axially symmetric shear vibration modes get decoupled from the rest of the motion,
which are not affected by thermal variations. For the non-axially symmetric case of plane strain
vibrations, these modes remain coupled and are affected by temperature change and thermal
relaxation times. However, in case of symmetric vibrations, extensional and shear modes of wave
propagation get decoupled from each other. The latter modes are not affected due to the thermal
variations and thermal relaxation times and vice versa. This study is important for ultrasonic non-
destructive inspection of large diameter pipes, which helps in the health monitoring of ailing
infrastructure. Longitudinal stress-corrosion cracks are detected more efficiently by inducing
circumferential waves; hence, the study of generalized thermoelastic wave propagation in the
circumferential direction in a pipe wall is essential. It can also be used to check the applicability of
various kinds of two-dimensional simplified shell theory in elastokinetics and numerical methods
such as FEM and BEM.
Acknowledgements

The authors are thankful to U.G.C. New Delhi, for providing financial help through an R&D
project sanctioned vides No. F.8-34/2001 (SR-I) and the reviewer for useful suggestions for the
improvement of this work.



ARTICLE IN PRESS

J.N. Sharma, V. Pathania / Journal of Sound and Vibration 281 (2005) 1117–11311130
References

[1] I.A. Victorov, Rayleigh-type waves on a cylindrical surface, Soviet Physics Acoustics 4 (1958) 131–136.

[2] J. Qu, Y. Berthelot, G. Liu, Dispersion of guided circumferential waves in a circular annulus, in: D.O. Thompson,

D.E. Chimenti (Eds.), Review of Progress in Quantitative Nondestructive Evaluation, vol. 15, Plenum, New York,

1996, pp. 169–176.

[3] O.D. Grace, R.R. Goodman, Circumferential waves on solid cylinders, Journal of the Acoustical Society of

America 39 (1966) 173–174.

[4] L.M. Brekhovskikh, Surface waves confined to the curvature of the boundary in solid, Soviet Physics Acoustics 13

(1968) 462–472.

[5] J. Cerv, Dispersion of elastic waves and Rayleigh type waves in a thin disc, Acta Technica CSAV 89 (1988)

89–99.

[6] G. Liu., J. Qu, Guided circumferential waves in a circular annulus, Journal of Applied Mechanics 65 (1998)

424–430.

[7] G. Liu., J. Qu, Transient wave propagation in a circular annulus subjected to impulse excitation in its outer

surface, Journal of the Acoustical Society of America 103 (1998) 1210–1220.

[8] C. Valle, J. Qu, L.J. Jacobs, Guided circumferential waves in layered cylinders, International Journal of Engineering

Science 37 (1999) 1369–1387.

[9] A.H. Nayfeh, Wave Propagation in Layered Anisotropic Media with Application to Composites, Elsevier,

Amsterdam, 1995.

[10] A. E Armenakas, E.S. Reitz, Propagation of harmonic waves in orthotropic circular cylindrical shell, Journal of

Applied Mechanics 40 (1973) 168–174.

[11] S. Towfighi, T. Kundu, M. Ehsani, Elastic wave propagation in circumferential direction in anisotropic cylindrical

curved plates, Journal of Applied Mechanics 69 (2002) 283–291.

[12] M.J. Musgrave, Crystal Acoustics, Holden-Day, San Francisco, CA, 1970.

[13] E. Dieulesaint, D. Royer, Elastic Waves in Solids, Wiley, New York, 1980.

[14] W. Nowacki, Dynamic Problem of Thermoelasticity, Noordhoff, Leyden, The Netherlands, 1975.

[15] H.W. Lord, Y. Shulman, The generalized dynamical theory of thermoelasticity, Journal of Mechanics and Physics

of Solids 15 (1967) 299–309.

[16] A.E. Green, K.A. Lindsay, Thermoelasticity, Journal of Elasticity 2 (1972) 1–7.

[17] D.K. Banerjee, Y.H. Pao, Thermoelastic waves in anisotropic solids, Journal of the Acoustical Society of America

56 (1974) 1444–1453.

[18] R.S. Dhaliwal, H.H. Sherief, Generalized thermoelasticity for anisotropic media, Quarterly of Applied

Mathematics 38 (1980) 1–8.

[19] D.S. Chandrasekharaiah, Thermoelasticity with second sound—a review, Applied Mechanics Review 39 (1986)

355–376.

[20] C.C. Ackerman, B. Bentman, H.A. Fairbank, R.A. Krumhansal, Second sound in Helium, Physical Review Letters

16 (1966) 789–791.

[21] R.A. Guyer, J.A. Krumhansal, Thermal conductivity, second sound and phonon hydrodynamic phenomenon in

non-mettalic crystals, Physical Review Letters 148 (1966) 778–788.

[22] C.C. Ackerman, W.C. Overtone Jr., Second sound in Helium-3, Physical Review Letters 22 (1969) 764–766.

[23] P. Chadwick, L.T.C. Seet, Wave propagation in transversely isotropic heat conducting elastic materials,

Mathematika 17 (1970) 255–274.

[24] P. Chadwick, Basic properties of plane harmonic waves in a prestreased heat conducting elastic material, Journal

of Thermal Stresses 2 (1979) 214–293.

[25] J.N. Sharma, On the low and high-frequency behavior of generalized thermoelastic waves, Archives of Mechanics

38 (1986) 665–673.

[26] H. Singh, J.N. Sharma, Generalized thermoelastic waves in transversely isotropic media, Journal of the Acoustical

Society of America 77 (1985) 1046–1053.

[27] J.N. Sharma, R.S. Sidhu, On the propagation of plane harmonic waves in anisotropic generalized thermoelasticity,

International Journal of Engineering Science 24 (1986) 1511–1516.



ARTICLE IN PRESS

J.N. Sharma, V. Pathania / Journal of Sound and Vibration 281 (2005) 1117–1131 1131
[28] A.H. Nayfeh, S.N. Nasser, Thermoelastic waves in solids with thermal relaxations, Acta Mechanica 12 (1971)

53–69.

[29] J.N. Sharma, Three-dimensional vibration analysis of a homogeneous transversely isotropic thermoelastic

cylindrical panel, Journal of the Acoustical Society of America 110 (2001) 254–259.

[30] K.F. Graff, Wave Motion in Elastic Solids, Dover Publications, New York, 1991.


	Generalized thermoelastic wave propagation in circumferential direction of transversely isotropic cylindrical curved plates
	Introduction
	Formulation of the problem
	Boundary conditions
	Solution of the problem
	Secular equation
	Stress-free plate
	Rigidly fixed plate

	Numerical results and discussion
	Conclusions
	Acknowledgements
	References


